Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

نویسندگان

  • L. López-Contreras
  • V. I. Hernández-Ramírez
  • A. E. Lagunes-Guillén
  • Sarita Montaño
  • B. Chávez-Munguía
  • B. Sánchez-Ramírez
  • P. Talamás-Rohana
چکیده

Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of S-Nitrosylated (SNO) Proteins in Entamoeba histolytica Adapted to Nitrosative Stress: Insights into the Role of SNO Actin and In vitro Virulence

We have recently reported that Entamoeba histolytica trophozoites can adapt to toxic levels of the nitric oxide (NO) donor, S-nitrosoglutathione (GSNO). Even if the consequences of this adaptation on the modulation of gene expression in NO-adapted trophozoites (NAT) have been previously explored, insight on S-nitrosylated (SNO) proteins in NAT is missing. Our study aims to fill this knowledge g...

متن کامل

Actin Polymerization 1 N Entamoeba

The mechanism by which trophozoites of the protozoan parasite, Entamoeba histolytica destroy mammalian cells is not clear. A variety of amoeba-associated properties have been correlated with virulence (reviewed in 1 and 2). In vitro studies (3-6) have shown that contact of the trophozoite with a target cell is required. Contact killing has been described (6) as occurring in the sequence: adhere...

متن کامل

The Entamoeba histolytica, Arp2/3 Complex Is Recruited to Phagocytic Cups through an Atypical Kinase EhAK1

The parasite Entamoeba histolytica is the etiological agent of amoebiasis and phagocytosis plays a key role in virulence of this organism. Signaling pathways involved in activation of cytoskeletal dynamics required for phagocytosis remain to be elucidated. Phagocytosis is initiated with sequential recruitment of EhC2PK, EhCaBP1, EhCaBP3 and an atypical kinase EhAK1 after particle attachment. He...

متن کامل

Overexpression of myosin IB in living Entamoeba histolytica enhances cytoplasm viscosity and reduces phagocytosis.

The human parasite Entamoeba histolytica is an ancient protozoan that expresses only one unconventional myosin, which has homology with myosin IB from other amoebae. Myosin IB is involved in phagocytosis of human cells by E. histolytica. In this work, we developed a microrheological technique, analysing magnetic phagosomes, which allowed us to probe the density of the F-actin network in living ...

متن کامل

EhCoactosin Stabilizes Actin Filaments in the Protist Parasite Entamoeba histolytica

Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using bot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013